
Transactions of the ASABE

Vol. 51(2): 515-520 2008 American Society of Agricultural and Biological Engineers ISSN 0001-2351 515

 

A DUAL MONTE CARLO APPROACH TO ESTIMATE MODEL

UNCERTAINTY AND ITS APPLICATION TO THE RANGELAND

HYDROLOGY AND EROSION MODEL

H. Wei,  M. A. Nearing,  J. J. Stone,  D. D. Breshears

ABSTRACT. Natural resources models serve as important tools to support decision making by predicting environmental indicators.
All model predictions have uncertainty associated with them. Model predictive uncertainty, often expressed as the confidence
interval around a model prediction value, may serve as important supplementary information for assisting decision making
processes. In this article, we describe a new method called Dual Monte Carlo (DMC) to calculate model predictive uncertainty
based on input parameter uncertainty. DMC uses two Monte Carlo sampling loops, which enable model users to not only calculate
the model predictive uncertainty for selected input parameter sets of particular interest, but also to examine the predictive
uncertainty as a function of model inputs across the full range of parameter space. We illustrate the application of DMC to the
process‐based, rainfall event‐driven Rangeland Hydrology and Erosion Model (RHEM). The results demonstrate that DMC
effectively generated model predictive uncertainty from input parameter uncertainty and provided information that could be useful
for decision making. We found that for the model RHEM, the uncertainty intervals were strongly correlated to specific model input
and output parameter values, yielding regression relationships (r2 > 0.97) that enable accurate estimation of the uncertainty
interval for any point in the input parameter space without the need to run the Monte Carlo simulations each time the model is
used. Soil loss predictions and their associated uncertainty intervals for three example storms and three site conditions are used
to illustrate how DMC can be a useful tool for directing decision making.

Keywords. Decision making, Model predictive uncertainty, RHEM, Soil erosion.

he environmental indicators predicted by natural re‐
sources models are important for assisting decision
making. However, a universal problem in applying
models is how the model output deviates from the

“true prediction.” If the uncertainty associated with the model
output (predictive uncertainty) can be quantified and propa‐
gated into model output, it may provide useful information for
many model application purposes. For example, average annual
soil loss values predicted by erosion models have served as a
single indicator to help assess erosion risk and to choose con‐
servation practices (Federal Register, 1997, 2004a, 2004b).
However, a single soil loss value alone may not provide ade‐
quate information about the erosion state, and it can be difficult
to justify decisions made on individual parcels of land based on
a single erosion value. It is also difficult to know to what level
of confidence in a given decision satisfactorily addresses an as‐
sociated desired conservation goal, or more importantly, when
a change in practice may cause the system to cross certain
threshold states, thereby suggesting the need for use of a differ‐
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ent conservation practice design. Knowing the level of uncer‐
tainty associated with the impact of a specific conservation plan
may allow one to quantify the risk of failure of that practice as
applied to a particular situation.

Model predictive uncertainty comes from multiple sources.
The input parameter set that users provide is usually the repre‐
sentation of the average condition of a study site (for example,
the average slope of a hillslope element). However, assigning a
value to that representative variable inherently involves a cer‐
tain degree of uncertainty, which will directly affect the level of
uncertainty of the model prediction. Model predictive uncer‐
tainty also comes from model structure and internal parameter
uncertainty (Chaves and Nearing, 1991). Structural uncertainty
is associated with the inadequacy and the incompleteness of the
model to represent the natural process. Internal parameter un‐
certainty refers to the coefficients set as constant values inside
the model, as well as limitations with model equation structures.
The variation of input parameter uncertainty at different sites
and the complicated interaction between input parameters make
the predictive uncertainty both site‐specific and implicit.

There are different types of uncertainty analysis methods
available for different purposes. For example, measurement un‐
certainty analyses, which often involve repetitive measure‐
ments and the so‐called “first‐order” or “Nth‐order” uncertainty
estimation, were designed to determine measure- ment inaccu‐
racies (Kline, 1985). Measurement uncertainty analyses have
been regarded as an effective tool for evaluating and calibrating
instruments and minimizing instrumentation costs (ASME/
WAM, 1985). Generalized Likelihood Uncertainty Estimation
(GLUE) is a method that was developed to evaluate model per‐
formance by looking at how the predicted value closes to the
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site‐specific observation using an objective function or
goodness‐of‐fit test (Freer and Beven, 1996; Brazier et al., 2000;
Brazier et al., 2001; Aronica et al., 2002). GLUE is a useful tool
for evaluating model performance for specific sites considering
the model uncertainty from model structure and input parame‐
ters. Sampling‐based uncertainty analysis is another method
that can be used if one wants to know how a model responds to
input over specified ranges (e.g., Breshears et al., 1989; Birchall
and James, 1994; Cacuci and Ionescu‐Bujor, 2004). This meth‐
od usually first addresses the input uncertainty by assigning
ranges of interest to each parameter, and then randomly samples
different combinations of input parameter sets and calculates
the outputs to examine uncertainty by looking at the range and
the distribution of the outputs. However, there is currently no
method that can both assess the site‐specific uncertainty inter‐
vals and examine the model predictive uncertainty across the
full range of the model parameter space.

The objective of this article was to develop a Dual Monte
Carlo (DMC) uncertainty analysis method to calculate pre‐
dictive uncertainty and then apply it to the Rangeland
Hydrology and Erosion Model (RHEM) (Wei et al., 2007) as
an example. The methodology of DMC is similar to the
sampling‐based uncertainty analysis mentioned above, but in
our case we use two Monte Carlo sampling loops for assess‐
ing the entire ranges of all the input parameters. This was
done for purposes of calculating the model uncertainty for
specific sites and conditions, and to examine the uncertainty
intervals as a function of model inputs across the full range
of the parameter space. The difference between DMC and
GLUE is that although DMC does not address the model
structural uncertainty by comparing model predictions with
site‐specific observations as does GLUE, DMC does quantify
the confidence of model predictions by calculating and
comparing the model predictive uncertainty generated from
input parameter uncertainty for different sites and different
site conditions, thereby assisting decision making. This was
demonstrated in this study by a comparison of uncertainty in‐
tervals associated with different erosion events.

METHODS
The DMC approach starts with delineating a model input

parameter space (denoted as I) by overlaying the full range
of each selected input parameter (fig. 1). Then, the first
Monte Carlo simulation is conducted to randomly select an
individual point, x0 (e.g., one input parameter set), from the
parameter space I using the Latin hypercube (LH) sampling
method (McKay et al., 1979). The model is executed, and the

First Monte Carlo simulation

Second Monte Carlo simulation
1. Assign uncertainty to each input parameter.
2.

on local uncertainty of inputs; randomly

calculate the corresponding output values.
3. Determine confidence intervals from the

output distribution.

Uncertainty intervals for all
the input parameter sets

Delineate the input parameter space (I)

Randomly sample a point x0 from the space (I)

Run model to obtain the output value y(x0)

Define a local space (i) around point x0 based

sample points from the local space (i) and

Uncertainty interval at point x0

Figure 1. Flowchart of the methodology outlined in this article.

output value y(x0) is computed and saved. The second Monte
Carlo simulation is conducted to calculate the uncertainty in‐
terval at x0, a process that requires three steps: (1) assign the
uncertainty to each input parameter at point x0 by providing
distribution information to all the input parameters; (2) build
a local input space (denoted i) around point x0 by combining
the uncertainty of all the input parameters, then conduct the
Monte Carlo simulation to randomly sample points from the
local space i, and then calculate the corresponding output val‐
ue for each (e.g., fig. 2 provides an example with two input
parameters);  and (3) extract the uncertainty intervals from
the output distribution. For example, for a local space size as‐
sociated with a 1000‐run, the 1000 model output values form
a distribution, of which the 950th largest value and the 50th
largest value are the upper and lower uncertainty intervals at
the confidence level of 95%. After finishing the second
Monte Carlo simulation and saving the results, the initial
Monte Carlo simulation is conducted again, and the process
is repeated until sufficient points x0 are selected for space I
to be well covered. A uniform distribution is used for the first
Monte Carlo simulation to ensure that parameter space I is
well covered and sampled. The distribution type of the sec‐
ond Monte Carlo simulation depends on the nature of the in-
put parameters, and it could vary for different parameters.

(a) (b) (c)

Figure 2. Steps for the second Monte Carlo simulation providing an example for two input parameters: (a) assign distribution for input parameters
at x0; (b) overlay the input parameter distributions to define a local space i around the point x0, calculate output values for points sampled from i; and
(c) extract the uncertainty intervals at certain confidence level from the distribution of output values.
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RHEM AND MODEL INPUTS FOR RUNNING DMC
RHEM is a newly conceptualized model that was adapted

from relevant portions of the WEPP (Water Erosion Predic‐
tion Project) model (Flanagan and Nearing, 1995; Nearing et
al., 1989; Laflen et al., 1997) and modified to specifically ad‐
dress rangeland conditions. It predicts the soil loss for range‐
lands based on the simulation of hydrology and erosion
processes. A previous study was conducted to assess the sen‐
sitivity of the predicted erosion to the model input variables
(Wei et al., 2007). RHEM provides a good case study for this
article because soil loss rates on natural rangelands are gener‐
ally low compared to other agricultural environments, and
low erosion rates have been shown to be associated with high
variability (Nearing et al., 1999). Quantitative estimations of
uncertainty on the RHEM soil loss predictions will increase
the ability of RHEM to direct decision making on choosing
appropriate conservation practices.

To run the DMC, the output and input parameters of inter‐
est need to be determined, and the ranges and the uncertainty
information for each input parameter must be assigned. In
this study, the amount of soil erosion from the hillslope, soi‐
loss (kg m-2) was the targeted output parameter. Twelve re‐
quired input parameters were selected for RHEM, and the full
range of parameter values for each input variable was as‐
signed (table 1). The sources of the ranges came from recom‐
mendations for rangeland applications in the WEPP model
documentation (Flanagan and Nearing, 1995) and from
WEPP rainfall simulation experimental databases (Elliot et
al., 1989; Simanton et al., 1991; Laflen et al., 1991; Alberts
et al., 1995).

Among the twelve input variables, slp and sln are the two
parameters that represent the slope condition; rain, xip, and
dur are rainfall parameters; ke is the hydraulic conductivity;
kss, kr, and �c are erodibility factors; and fr and fe are friction
factors. The particle size distribution factor (psd) was used in
the model to build a lognormal distribution curve, from
which five pairs of particle size and fraction data were ob‐
tained and passed to the transport capacity and deposition
calculations (psd represents the mean value of the lognormal
distribution). A standard deviation of 2.16 was calculated
from the WEPP rangeland database and was used for the dis‐
tribution of all types of sediments.

The inputs for storm and slope condition were considered
as the driving force and given as constants; hence, no uncer‐
tainties were assigned to these parameters. The uncertainties

Table 1. Parameters and parameter ranges used in this study.

Parameter
Lower
Bound

Upper
Bound Unit Description

slp 3 30 % Slope
slplen 10 100 m Slope length
rain 20 120 mm Rainfall volume
dur 0.5 2 h Rainfall duration
xip 1 20 ‐‐ Rainfall intensity variable

kss 50 4600 ‐‐
Splash and sheet erosion

coefficient

kr 0.00004 0.003 s m‐1
Concentrated flow erosion

coefficient
τc 0.0001 5.71 N m‐2 Critical shear stress
ke 0.8 40 mm h‐1 Effective hydraulic conductivity
fr 4.07 200 ‐‐ Friction factor for runoff
fe 1.11 100 ‐‐ Friction factor for erosion

psd ‐7 ‐1 ‐‐ Particle size distribution

Table 2. Input parameter uncertainty and the range of parameter
values used to obtain the information on uncertainty.

Input
Parameter Min.[a] Max.[a] SD

CV
(%)

kss 80 457 30.13
kr (s m‐1) 0.000048 0.0013 30.73
τc (N m‐2) 0.20 2.23 0.8539

ke (mm h‐1) 1.14 36.94 ‐43.11 log(ke) + 1.38
psd ‐6.56 ‐1.61 ‐7.81[b]

fr 20.73 193.78 12.23
fe 9.16 52.92 14.55

[a] Database size used to calculate input parameter uncertainty.
[b] The variation of psd was assumed equal to that of the primary sediment

distribution.

of the remaining seven parameters were addressed using ei‐
ther the standard deviation (SD) or coefficient of variation
(CV) (table 2). From the WEPP database, we compiled repet‐
itive measurements of the input parameters to determine if
the standard deviation or coefficient of variation (CV) could
be used to describe the uncertainty. Such data on rangeland
erosion parameters are rare, with the WEPP rangeland data‐
set being the most comprehensive data set of this type to date.
Since the range of the values of individual parameters in the
database used to characterize input distributions was similar
to the domain of the input parameter space I (see tables 1
and�2), we believe that input uncertainty in table 2 can be ap‐
plied to the entire parameter space I. The uncertainty of an
input parameter may be dependent on the magnitude of the
parameter. In our case, we found there was an exponential
relationship between hydraulic conductivity ke and the coef‐
ficient of variation of ke (r2 = 0.68) (fig. 3).

SAMPLING METHODS FOR THE MONTE CARLO SIMULATIONS
Because of the different purposes of the two Monte Carlo

simulations, we used different sampling methods in each
case. Latin hypercube (LH) sampling was used for the first
Monte Carlo simulation to select random points from the uni‐
formly distributed parameter space I. McKay et al. (1979)
compared several sampling techniques, and found that the
LH method has a number of desirable properties over others.
One of the advantages of this method that makes it appropri‐
ate for this study is that LH ensures full coverage over the
range of each variable so that all areas of the sample space

Figure 3. Example of how input parameter uncertainty was determined.
A function was used to address uncertainty for parameter ke, based on the
relationship revealed in the data.
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will be represented by the selected input values. The more
points that are selected from the parameter space, the more
the space will be densely covered and the more reliable the
results will be. To ensure a well‐covered parameter space, we
compared the results from different sampling sizes. Statisti‐
cal comparison of the relationship between uncertainty inter‐
vals and predicted output values showed there was no
significant difference between the results from 200,000
points and 500,000 points for our simulations. Therefore, re‐
sults from 200,000 points were used in this article. The pur‐
pose of the second Monte Carlo simulation was to randomly
sample input parameter values and build a local space i based
on the characteristics of the input distributions. For example,
a normal distribution could be formed given the mean value
and either the standard deviation or the coefficient of varia‐
tion. The inverse normal distribution function was applied to
generate the input parameter value for any given probability
(0‐1), with the probability based on random numbers gener‐
ated from a random function in Visual Fortran. We sampled
1,000 points to build the space i for each point selected from
space I.

RESULTS AND DISCUSSIONS
For RHEM, the magnitude of the expected soil loss value

and the associated uncertainty intervals based on a 95% con‐
fidence level at each point x0 were highly related to the
model‐estimated  soil loss y(x0) such that uncertainty in‐
creased with magnitude of soil loss (fig. 4). The expected soil
loss value was computed as the mean of the 1000 values from
the output distribution around each point x0. On average, the
mean values were within a few percent of the predicted val
es. This means that for the model RHEM, the output distribu‐
tions were not significantly skewed (either positively or neg-
atively). Different results in this regard might be expected
from different models. If the two values (expected and pre‐
dicted) were significantly different, this would mean that the
output distributions were highly skewed, in which case the
model predictive uncertainty analysis would become even
more important. The lower and upper limits of 95% confi-
dence intervals for the estimated soil loss value (fig. 4) show

Figure 4. Expected prediction and uncertainty intervals vs. the predicted
value.

that the uncertainties were highly dependent on the magni‐
tude of the soil loss value.

The magnitude of the model predictive uncertainty de‐
pends not only on the input parameter values and the uncer‐
tainties associated with them, but also on the model structure,
the sensitivity of the model output to the input parameters,
and interactions between the model parameters. To assess
whether our results of model uncertainty were realistic, we
compared our overall results to the measured data from ero‐
sion plots. Erosion datasets for such a comparison are rare.
Here we use data from Nearing et al. (1999) to examine the
natural and measurement variability of soil loss. Nearing et
al. (1999) collected measured soil loss data from replicated
plot‐pair for 2061 storms, 797 annual erosion measurements,
and 53 multi‐years, which represented 13 different site loca‐
tions, each with different soil types. Nearing et al. (1999) cal‐
culated the mean value (Mm) and coefficient of variation
(CVm) from the replicated soil loss measurements, and found
a linear relationship between the logarithm of CVm and the
logarithm of Mm: log (CVm) = -0.306log(Mm) - 0.442 (r2 =
0.78).

A comparative type of relationship with our predicted data
from RHEM was obtained using the coefficient of variation
(CVp) and the expected value (Mp) obtained from the output
distributions. The variance between replicates was related to
the magnitude of the soil loss, with higher variation associat‐
ed with smaller events. This was true for both the measured
data and our model predictions (fig. 5). The regression line
developed by Nearing et al. (1999) from the measured dataset
fell within the range of our predicted data, which indicated
that DMC gave realistic quantifications of the model uncer‐
tainty. Although our predicted relationship differed slightly
in slope from the regression developed by Nearing et al.
(1999), this difference is minor compared to the overall varia‐
tion in the observed data and could be due to several factors:
our model assessment had more sampling points and did not
consider the input uncertainty on the slope and rainfall pa‐
rameters, and our comparison does not include uncertainty in
model structure.

Figure 5. Coefficient of variation (CV) for predicted soil loss from the out‐
put distribution at a point vs. the expected predicted soil loss value. The
corresponding relationship developed from measured data (Nearing,
1999) is also shown.
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The high correlations between the predicted soil loss value
and uncertainty intervals (r2 of 0.95 and 0.97 in fig. 4) indi‐
cate that the relationships can be used to quantify the model
uncertainty. Furthermore, we found that the model uncertain‐
ty intervals were also highly related to the output parameter,
to runoff depth, and to some input parameter values such as
rainfall amount and saturated hydraulic conductivity. We de‐
veloped two regression functions that even had greater r2 val‐
ues for the upper and lower uncertainty intervals at 95%
confidence level:

Upper interval (r2 = 0.97)

= 0.01 + 2.2soiloss + 0.004(soiloss*rain)

-0.02(soiloss*ke)  - 13.7(soiloss*runoff)

Lower interval (r2 = 0.98)

= -0.002 + 0.39soiloss - 0.001(soiloss*rain)

+ 0.004(soiloss*ke) + 3.3(soiloss*runoff)

The advantage of these equations is that they allow the
model developers to provide to the user an estimate of the
confidence range for a given model output without the need
to run a full Monte Carlo simulation around the user's point
of interest (x0) each time the model is used. We used the step‐
wise multiple variable linear regression in SAS and selected

Figure 6. Predicted uncertainty intervals from the regression equations
vs. uncertainty intervals calculated from DMC.

equations with the highest r2 to generate the two above func-
tions. The variables in the equations were selected from all
the input parameter, the product of input parameters, the out‐
put runoff depth (runoff, m), and the output soil loss rate (soi‐
loss, kg m-2). The predicted uncertainty intervals from the
equations were very close to those calculated from DMC
(fig.�6).

APPLICATION

To show how the predictive uncertainty can be used to as‐
sist decisions relative to natural resources management, we
applied our results to a 0.18 ha shrub‐dominated watershed
located in the USDA‐ARS Walnut Gulch Experimental Wa‐
tershed in southeastern Arizona. We calculated the soil loss
from RHEM and the associated uncertainty from the equa‐
tions derived in the previous section for three different sizes
of storms (table 3: 1‐year, 25‐year, and 100‐year return rain‐
fall amount) and three different site conditions (table 4: cur‐
rent, moderately degraded, and severely degraded). The
values of hydraulic conductivity and soil erodibility coeffi‐
cients for the current condition in table 4 were obtained from
the rangeland WEPP rainfall simulation dataset, and we arbi‐
trarily decreased ke and �c and increased kss and kr by differ‐
ent amounts to simulate the different site conditions, since
poor conditions could be expected to relate to low hydraulic
conductivity due to the soil compaction, and to higher soil
erodibility due to less vegetation coverage.

The magnitude of the uncertainty intervals varied with the
size of storm and site conditions (fig. 7). To evaluate the ero‐
sional risk, we referred to Rollins' (1982) general estimation
of the T factor (soil loss tolerance rate) for rangeland as a ref‐
erence level. The T factor is defined as the predetermined
value of soil loss below which there will be limited effect of
soil loss on the fertility and the productivity of soil in an eco‐
nomic sense. Rollins (1982) proposed a T factor of 1 ton
acre-1 year-1 for rangelands and pointed out that rangelands
cannot tolerate the same soil loss as croplands due to the low
soil formation rate that occurs in rangelands. Results indi‐
cated that the absolute uncertainty intervals increased as the
size of the storm increased and as the degree of assumed land
degradation increased (fig. 7). Furthermore, the upper uncer‐
tainty intervals for the moderately degraded and severely de‐
graded conditions from the 25‐year and 100‐year rainfall
events were quite close to the yearly T value. Considering the
high predictive uncertainty associated with these two erosion
events, decision makers may want to choose conversation
practices stronger than the practices traditionally selected
based on the model‐predicted soil loss values.

Table 3. Storm input parameters.

Frequency (year) 1 25 100
Duration (h) 0.5 1 3

Rainfall (mm) 17.78 51.31 76.71

Table 4. Hydrological and erosion parameters for different conditions.

Parameter
Current

Condition
Moderately
Degraded

Severely
Degraded

ke (mm h‐1) 28.7 28.7 × 0.5 = 14.35 28.7 × 0.05 =1.44
kss 435 435 × 3 = 1305 435 × 6 = 2610

kr (s m‐1) 0 0.0001 0.001
τc (N m‐2) 0 1.20 0.5



520 TRANSACTIONS OF THE ASABE

Figure 7. Predictive uncertainty for three different storms and three dif‐
ferent site conditions. The abscissa is divided into three sections for three
storm sizes (17.78, 51.31, and 76.71 mm). Site conditions are indicated by
letters a, b, and c, where a is the current condition, b is the moderately de‐
graded condition, and c is the severely degraded condition. For each
event, the predicted soil loss rate and the upper and lower uncertainty in‐
tervals are connected by a vertical line. The soil loss tolerance value (1 ton
acre-1 year-1; the horizontal dashed line) is also given in the figure as a
reference to evaluate the erosional risk.

CONCLUSIONS
A Dual Monte Carlo (DMC) approach was developed to cal‐

culate the predictive uncertainty for any selected model input
parameter set and to simultaneously examine the uncertainty in‐
tervals as a function of the output and input parameter values.
A case study using the Rangeland Hydrology and Erosion Mod‐
el (RHEM) describes the framework of DMC. A comparison of
the variations of RHEM‐predicted soil loss from the DMC ap‐
proach with the measured soil loss variations published by
Nearing et al. (1999) demonstrated that DMC provided realistic
estimation of model uncertainty for RHEM. The calculated
model predictive uncertainty of RHEM was used to evaluate the
erosion risk for different scenarios. The results indicated that
model uncertainty increased with increased storm size and in‐
creased degradation levels, and therefore decision makers may
want to choose different conservation plans than what a single
predicted soil loss value would suggest. In summary, the DMC
approach can be used to quantify model predictive uncertainty,
which provides supplementary information and increases the
model's ability for assisting the decision making process.
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